\qquad
Section:
Date: \qquad

Wave Speed Equation Practice Problems

The formula we are going to practice today is the wave speed equation:
wave speed = wavelength * frequency

$$
v=\lambda f
$$

Variables, units, and symbols:

Quantity Symbol	Quantity Term	Unit	Unit Symbol
v	wave speed	meters/second	m / s
λ	wavelength	meter	m
f	frequency	Hertz	Hz

Remember:

frequency: number of complete waves passing a point in a given time $\mathrm{f}=\frac{\text { number of cycles }}{\mathrm{t}}$

- If 10 waves pass in 1 second, the frequency is 10 Hz
- If 6 waves pass in 2 seconds, the frequency is 3 Hz

Sample Problems:

Sample Problem 1) A wave has frequency of 50 Hz and a wavelength of 10 m . What is the speed of the wave?
$\mathrm{f}=50 \mathrm{~Hz}$
$\lambda=10 \mathrm{~m}$
$\mathrm{v}=$?
$\mathrm{v}=\lambda \cdot \mathrm{f}=(10 \mathrm{~m}) \cdot(50 \mathrm{~Hz})=500 \frac{\mathrm{~m}}{\mathrm{~s}}$
Sample Problem 2) A wave has frequency of 5 Hz and a speed of $25 \mathrm{~m} / \mathrm{s}$. What is the wavelength of the wave?
$\mathrm{f}=5 \mathrm{~Hz}$
$\mathrm{v}=25 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\lambda=$?
$\mathrm{v}=\lambda \cdot \mathrm{f} \Rightarrow \lambda=\frac{\mathrm{v}}{\mathrm{f}}=\frac{25 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~Hz}}=5 \mathrm{~m}$
Sample Problem 3) A wave has wavelength of 10 m and a speed of $340 \mathrm{~m} / \mathrm{s}$. What is the frequency of the wave?
$\lambda=10 \mathrm{~m}$
$\mathrm{v}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{f}=$?
$\mathrm{v}=\lambda \cdot \mathrm{f} \Rightarrow \mathrm{f}=\frac{\mathrm{v}}{\lambda}=\frac{340 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~m}}=34 \mathrm{~Hz}$

Problems for you to try: Complete the following practice problems. You MUST show ALL the work outlined in the steps in the example problems.

1. A wave with a frequency of 14 Hz has a wavelength of 3 meters. At what speed will this wave travel?
2. The speed of a wave is $65 \mathrm{~m} / \mathrm{sec}$. If the wavelength of the wave is 0.8 meters, what is the frequency of the wave?
3. A wave has a frequency of 46 Hz and a wavelength of 1.7 meters. What is the speed of this wave?
4. A wave traveling at $230 \mathrm{~m} / \mathrm{sec}$ has a wavelength of 2.1 meters. What is the frequency of this wave?
5. A wave with a frequency of 500 Hz is traveling at a speed of $200 \mathrm{~m} / \mathrm{s}$. What is the wavelength?
6. A wave has a frequency of 540 Hz and is traveling at $340 \mathrm{~m} / \mathrm{s}$. What is its wavelength?
7. A wave has a wavelength of 125 meters is moving at a speed of $20 \mathrm{~m} / \mathrm{s}$. What is it's frequency?
8. A wave has a frequency of 900 Hz and a wavelength of 200 m . At what speed is this wave traveling?
9. A wave has a wavelength of 0.5 meters and a frequency of 120 Hz . What is the wave's speed?
10. Radio waves travel at a speed of $300,000,000 \mathrm{~m} / \mathrm{s}$. WFNX broadcasts radio waves at a frequency of $101,700,000$ Hertz. What is the wavelength of WFNX's radio waves?
