Thermal Equilibrium Calculations

This sheet can help you practise how to determine the required calculation for thermal equilibrium problems. Remember: Determine the objects which are losing energy and those which are gaining energy. The energy lost equals the energy gained.
$\mathrm{c}_{\text {water }}=4200 \mathrm{~J} / \mathrm{kgK} \quad \mathrm{c}_{\text {ice }}=2100 \mathrm{~J} / \mathrm{kgK} \quad \mathrm{c}_{\text {copper }}=390 \mathrm{~J} / \mathrm{kgK} \quad \mathrm{L}_{\text {f }, \text { ice }}=3.34 * 10^{5} \mathrm{~J} / \mathrm{kg}$

1) What is the final temperature of 0.1 kg of ice at $0^{\circ} \mathrm{C}$ added to an insulated container filled with 4.5 kg of water at $20^{\circ} \mathrm{C}$?
2) What is the final temperature of 10 g of ice at $-15^{\circ} \mathrm{C}$ added to a styrofoam cup filled with 220 ml of water at $32^{\circ} \mathrm{C}$?
3) An unknown metal weighing 900 g at an initial temperature of $140^{\circ} \mathrm{C}$ is placed into an insulated container holding 3 L of water at an initial temperature of $60^{\circ} \mathrm{C}$. The water rose to $65^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal?
4) How much ice is needed to cool 150 ml of water from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ if it is in a copper cup weighing 100g?

The solutions are on the next page. It is a better learning strategy to try the question before looking at the solution.

SOLUTIONS

1) What is the final temperature of 0.5 kg of ice at $0^{\circ} \mathrm{C}$ added to an insulated container filled with 4.5 kg of water at $20^{\circ} \mathrm{C}$?

Heat loss of water $=$ heat to melt ice + heat gained by melted ice
$m_{\text {water }} c_{\text {water }} \Delta T=m_{\text {ice }} L+m_{\text {ice }} \mathcal{C}_{\text {water }} \Delta T$
$4.5 * 4200 *\left(20-T_{F}\right)=0.1 * 3.34 * 10^{5}+0.1 * 4200 *\left(T_{F}-0\right)$
$T_{F}=17.8^{0} C$
2) What is the final temperature of 100 g of ice at $-15^{\circ} \mathrm{C}$ added to a styrofoam cup filled with 220 ml of water at $32^{\circ} \mathrm{C}$?

Heat gained by ice + heat to melt ice + heat gained by melted ice $=$ heat lost by water
$m_{\text {ice }} c_{i c e} \Delta T+m_{\text {ice }} L_{f}+m_{\text {ice }} c_{\text {water }} \Delta T=m_{\text {water }} c_{\text {water }} \Delta T$
$0.01 * 2100 *(0-(-15))+0.01 * 3.34 * 10^{5}+0.01 * 4200 * T_{F}=0.22 * 4200 *\left(32-T_{F}\right)$
$T_{F}=26.8{ }^{0} \mathrm{C}$
3) An unknown metal weighing 900 g at an initial temperature of $140^{\circ} \mathrm{C}$ is placed into an insulated container holding 3 L of water at an initial temperature of $60^{\circ} \mathrm{C}$. The water rose to $65^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal?

Heat gained by water $=$ heat lost by metal
$m_{\text {water }} c_{\text {water }} \Delta T=m_{\text {metal }} c_{\text {metal }} \Delta T$
$3 * 4200 *(65-60)=0.9 * c_{\text {metal }} *(140-65)$
$c_{\text {metal }}=933 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
4) How much ice at $0^{\circ} \mathrm{C}$ is needed to cool 150 ml of water from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ to if it is in a copper cup weighing 100g?

Heat to melt ice + heat gained by melted ice $=$ heat lost by water + heat lost by cup
$m_{\text {ice }} L_{f}+m_{\text {ice }} c_{\text {water }} \Delta T=m_{\text {water }} c_{\text {water }} \Delta T+m_{\text {copper }} c_{\text {copper }} \Delta T$
$m_{\text {ice }} * 3.34 * 10^{5}+m_{\text {ice }} * 4200 *(40-0)=0.15 * 4200 *(60-40)+0.1 * 390 *(60-40)$
$m_{\text {ice }}=0.027 \mathrm{~kg}$

