Name:	KEN		
-------	-----	--	--

Date:	

- 1. Calculate the molar mass in grams of each of the following:
 - a. Na

 Br_2

22.99 g/mol

159.8g/mol

c. CaCl₂

110.98 g/mol

d. C₂H₅OH

46.08 g/mol

- 2. Calculate the number of moles of atoms in:
 - a. 23 g of sodium

I mol Na

239 1 mol

64 g of sulfur 2 mol S

64g S 11 mol S 132.07g

c. 7 grams of iron 0.13 mol R d

7g Fe | 1 mol Fe | 55.85 g Fe 20 g krypton . 24 mol K 20g K/1 mol K 183.8g K

3. State the number of moles in:

a. 58.5 g sodium chloride \ mol \

58.59 Nacl/I mol Nacl
158.449

50 g of CaCO3 . 50 mol CaCO3

303g of Potassium Nitrate 3 mol KNO3

50g 1 moi caco3

c. 499 g of CuSO₄ 3.13 mol

d.

303g KNO3 | 1 mol

499 g CuSO4 1 mol CuSO4

4. Given Avogadro's Number 6 x 10 ²³ , ca a. 48 g of Magnesium	lculate the number of atoms in: b. 336 g of iron
189 Mg/1mo/ Mg/602x1023 24.319 1mol	336 g Fe 1 mol 6.02 x 10 ²³ 55.85 g 1 mol
1.19×10 ²⁴ atoms Mg	3.62×10 ²⁴ actoms
Calculate the mass of the following sana. 5 mol sodium chloride	nples: b. 50 mol of CaCO ₃
5 mol Nacl 58.44 g Nacl	50 mol 100.09 g Cal03
292.29 Nacl	5004.5g CacO3
c. 43 mol of CuSO ₄	d. 3.03 x 10 ⁻³ mol of Potassium Nitrate
03 mol 159.62g	3.03x10-3 mol/101.11 g
6863.66 g CuSO4	.306g KNO3
1. How many moles of hydrogen are need	ed to react completely with two moles of nitrogen?
2 mot Pz 3 mol Hz	6 mol Ha

R

2. How many grams of hydrogen are necessary to react completely with 50g of nitrogen, and how much ammonia will be produced?

1.78 mol N2 1.78 mol N2 3.56 mol NH3 17.04 g NH3 10.79 g H2

1.78 mol N2 2 mol NH3 3.56 mol NH3 17.04 g NH3

1 mol N2 1 mol N2

L	im	iting	Rea	ctant	s Pr	actice
-	-					

1. Forty grams of magnesium is reacted with an excess of oxygen. How much oxygen is used in the 2 Mg + O2 - 2Mg0

40 g Mg | 1 mol Mg | 1.65 mol Mg | 1 mol O2 | 124.31 g Mg | 12 mol Mg

.825 mol 02 329 02 1 mol 02

2. In a container, 100 grams of iron is combined with 100 grams of oxygen to form iron (II) oxide.

a. How much iron (II) oxide is produced? 2 Fe

$$2Fe + O_2 \rightarrow 2Fe O$$

6.26 mol fel

- b. Which element is the limiting reactant?
- c. How much of the excess reactant does not react?

compound found in eyeglass lenses. a. How much silver bromide is produced? **The state of the
10 g Ag 1 mo 1 Ag .649 mo 1 Ag 2 mo 1 Ag Br .649 mo 1 Ag B
50 g Br2 1 mol Br2 . 313 mol Br2 2 mol AgBr . 626 mol AgBr 159.8g Br2 11 mol Br2
.313 mol Br2 2 mol Ag . 626 mol Ag Used 107.87 g Ag 1 mol Br2 1 mol Ag 67.53e b. Which element is the limiting reactant? Br2 Used
c. How much of the excess reactant does not react? 70-67.539 2.41g Ag not kacted 4. In a container, 30 grams of potassium is combined with 25 grams of nitrogen and potassium
nitride is formed. a. How much potassium nitride is formed? b K + H2 - 2K3N 30g K 1 mol K 2 mol K3N - 511 mol K3N
5g N2 1 mol N2 . 892 mol N2 2 mol K3N 1.784 mol K3N 128.029 1 mol N2
b. What is the limiting reactant? K
c. How much of the excess reactant remains?
.767 mol K 1 mol N2 28.029 3.599 N2 1 mol N2 Used
259-3.599 = [21.419 Nz Unreacted]

3. Seventy grams of silver are allowed to react with 50 grams of bromine to form silver bromide, a

Predicting Products Practice

Complete the following word equations and then write a balanced molecular equation. Identify the reaction type to the left of the arrow. If no reaction is to take place write NR after the yield arrow.

∠2 1. Lead + mercury (II) sulfate →

Pb +2HgSO₄
$$\rightarrow$$
 Pb(SO₄)₂ + 2Hg

OP 2. Copper (II) sulfate + lead (II) nitrate →

DQ. 3. Lead (II) nitrate + potassium iodide →

Sec. 4. Sodium + magnesium phosphate →

SQ 5. Zinc chlorate + magnesium →

 \mathbf{D} 6. Barium chloride + sulfuric acid \Rightarrow

7. Barium chloride + nitric acid →

Se 8. Zinc + magnesium hypochlorite →

9. Calcium chloride + silver nitrate →

5P 10. Gold (III) nitrate + silver →

Stoichiometry Ws # 2: Stoichiometric Conversions
 Copper I oxide solid is produced in a combination reaction with solid copper and oxygen gas Write a balanced chemical equation for this reaction.
Cu 20 4 Cu + O ₂ → 2 Cu ₂ O
b. How many moles of copper are needed to produce 13 moles of copper I oxide?
13 mol Cu20 4 mol Cu 26 mol Cu
c. How many moles of copper I oxide would be produced if only .25 moles of oxygen were available?
· 25 mol 02/2 mol Cu20 . 5 mol Cu20
d Ventured and 117 around of annual T avide House are a filled
11.79 Cu20 Imol Cu20 .082 mol I mol Oz .041 mol 0z 329
2. Iron III oxide will decompose in the presence of hydrogen gas and heat to produce free iron and water.
 Iron III oxide will decompose in the presence of hydrogen gas and heat to produce free iron and water. Write a balanced equation for the reaction.
Fe ₂ O ₃ +3H ₂ + (101) + (10
b. What mass of iron is produced when 450.0 grams of iron III oxide decomposes?
150 g Fr203 1 mol Fr203 2.82 mol Fr203/2 mol Fr 5.64 mol Fr 55.859 34.90
159.79 c. How many moles of hydrogen gas are needed to produce 90.0 grams of iron? [Mol R203
0 g F 1 mol F 2 mol F 2.42 mol H2 2.42 mol H2
d. How many grams of water will be produced when .01 moles of iron III oxide decomposes?
01 mol Fe ₂ 03 3 mol H20 .03 mol H20 18.02 g H20 [Est a Ha D]
1 mol Fe 203 1 mol H20
 Solid calcium combines with oxygen gas to form solid calcium oxide. Write a balanced equation for the reaction.
$2Ca + O_2 \rightarrow 2CaO$
b. How many moles of calcium oxide would be produced if only .33 moles of oxygen were available?
.33 mol 02/2 mol CaO
.33 mol 02/2 mol CaO [blo mol CaO]
c. If 4.5 grams of oxygen were used, how many grams of calcium are needed for the reaction to go to completion?
4.5g 02 1 mol 02 .141 mol 02 2 mol Ca . 282 mol Ca 40.089 1 mol Ca
7.5g 02 1 mol 02 .141 mol 02 2 mol Ca . 282 mol Ca 40.089
I mol O2

Date _____ Period _____

Name _____

 The combustion of butane gas is used in many hand held lighters Write a balanced chemical equation for the reaction.
2 C4H10 +1302 \longrightarrow 8 CO2 +10H2O
b. How many moles of oxygen are required to burn 4.8 moles of butane completely?
4.8 mol C4 H10 3 mol 02 31.2 mol 02
c. How many grams of CO2 are produced when 88g of O2 react with an excess of butane?
902/1mo102 2.75 mol 02/8 mol CO2 1.69 mol CO2/44.019CO2 74.38 9 CO2
132 g O2 113 mol O2 11 mol CO2
 Sodium Chloride can be split into its elements by electrolosis. a. Write a balanced chemical equation for this reaction.
2 Nacl -> 2 Na + Cl2
b. How many males of chlorine as are produced when 40 00 of salt is split by electrologic?
Dg Nacl I mol Nacl . 684 mol Nacl I mol Cl2 [342 mol Cl2] S8.449 Nacl
c. How many moles of sodium is produced when 5 moles of NaCl is split?
5 mol Macijz mol Na
12 mol Naci 5 mol Na
 The complete combustion of liquid ethanol, C₂H₅OH, is used in alcohol burners. a. Write a balanced chemical equation for this reaction.
$C_2H_5OH +3O_2 \longrightarrow 2CO_2 + O_{23}H_2O$
b. How many grams of water are produced in the complete combustion of 100.0 grams of ethanol?
100g C2thOHI mol C2H5OH 2.17 mol C2H5OH 3mol H20 6.51 mol H20 18.02
146.08 g C2H5OH mol C2H5OH mol mol mol
c. In the complete combustion of ethanol, how many moles of oxygen are necessary to produce 18 moles of carbon dioxide?
18 moi co2 3 moi 02 27 moi 02
2 moi CO2
d. In the complete combustion of ethanol, how many grams of carbon dioxide are produced when 1.2
moles of water is produced? 1.2 mol tho 2 mol CO2 0.8 mol CO2 44.01 g cO2 35.21 q
3 mol H20 1 mol CO2 CO2
8. Aqueous solutions of barium nitrate and ammonium carbonate react in a double replacement reaction.
a. Predict the products and write the balanced equation for the reaction.
b. How many moles of ammonium nitrate will be produced form 110.0 grams of ammonium carbonate?
110 9 (NH4)2 CO3 [mol(NH4)2CO2 1.14 mol (NH4)2CO3 2 mol NH4NO3) 7 28 mol
c. How many moles of barium carbonate would be produced from 6 moles of ammonium carbonate?
6mol (NH4)2 CO3/1 mol BacO3
d. How many grams of barium nitrate are needed to react with 220.0 grams of ammonium carbonate?
220 g (2H4)2 CO3 / 1 mol (NH4)2CO3 2.29 mol (NH4)2 CO3 / 1 mol BacO3
196.11 9 (NH+)2CO3 [1 mol(NH+)2CO2
2.29 mol Baco, 197.34 g Baco3 (451.91 9 Baco3)