# Stoichiometry Worksheet and Key

#### $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$

1. How many moles of O<sub>2</sub> will be formed from 1.65 moles of KClO<sub>3</sub>?



2. How many moles of KClO<sub>3</sub> are needed to make 3.50 moles of KCl?



3. How many moles of KCl will be formed from 2.73 moles of KClO<sub>3</sub>?



4 Fe + 
$$3 O_2 \rightarrow 2 Fe_2O_3$$

4. How many moles of Fe<sub>2</sub>O<sub>3</sub> are produced when 0.275 moles of Fe is reacted?



5. How many moles of Fe<sub>2</sub>O<sub>3</sub> are produced when 31.0 moles of O<sub>2</sub> is reacted?



6. How many moles of  $O_2$  are needed to react with 8.9 moles of Fe?



$$2 H_2O \rightarrow 2 H_2 + O_2$$

- 7. How many moles of O<sub>2</sub> are produced when 1.26 moles of H<sub>2</sub>O is reacted?
- 8. How many moles of H<sub>2</sub>O are needed to produce 55.7 moles of H<sub>2</sub>?
- 9. If enough H<sub>2</sub>O is reacted to produce 3.40 moles of H<sub>2</sub>, then how may moles of O<sub>2</sub> must have been made? (a bit challenging, but just think about it and you can probably figure it out)

## $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$

| 10. How many <b>gr</b>                | <b>ams</b> of $O_2$ will be form                    | ed from 3.76 grams of              | of KClO <sub>3</sub> ?                                         |                       |
|---------------------------------------|-----------------------------------------------------|------------------------------------|----------------------------------------------------------------|-----------------------|
| 3.76g KClO <sub>3</sub>               | 1 mol KClO <sub>3</sub>                             | $\mod O_2$                         | g $O_2$                                                        | σ O <sub>2</sub>      |
|                                       | 122.55 g KClO <sub>3</sub>                          | mol KClO <sub>3</sub>              | $\begin{array}{c c} & g O_2 \\ \hline & mol O_2 \end{array} =$ | g O <sub>2</sub>      |
| 11. How many <b>gr</b>                | ams of KClO <sub>3</sub> are need                   |                                    | ns of KCl?                                                     |                       |
| 30.0 g KCl                            | mol KCl                                             | mol KClO <sub>3</sub>              | g KClO <sub>3</sub>                                            | - KC10                |
|                                       | g KCl                                               | mol KCl                            | mol KClO <sub>3</sub>                                          | = g KClO <sub>3</sub> |
| 12. How many gra                      | ams of KCl will be form                             | ned from 2.73 g of K               | ClO <sub>3</sub> ?                                             |                       |
| $2.73 \text{ g KClO}_3$               |                                                     |                                    |                                                                | 11.01                 |
|                                       |                                                     |                                    |                                                                | = g KCl               |
|                                       | 4 I                                                 | Fe + $3 O_2 \rightarrow 2 F$       | $e_2O_3$                                                       |                       |
| 13. How many gr                       | rams of Fe <sub>2</sub> O <sub>3</sub> are produced | uced when 42.7 <b>gran</b>         | <b>ns</b> of Fe is reacted?                                    |                       |
| 42.7 g Fe                             | mol Fe                                              | mol Fe <sub>2</sub> O <sub>3</sub> | $g Fe_2O_3$                                                    |                       |
|                                       | g Fe                                                | mol Fe                             | $g Fe_2O_3$ $mol Fe_2O_3$                                      | =   g Fe2O3           |
| 14. How many gr                       | rams of Fe <sub>2</sub> O <sub>3</sub> are produced |                                    |                                                                |                       |
| 17.0 g O <sub>2</sub>                 |                                                     |                                    |                                                                |                       |
|                                       |                                                     |                                    |                                                                | =   g Fe2O3           |
| 15. How many gr                       | rams of $O_2$ are needed to                         | react with 125 gran                | ns of Fe?                                                      |                       |
|                                       |                                                     |                                    |                                                                |                       |
|                                       |                                                     |                                    |                                                                |                       |
| Some cars can use                     | e butane (C <sub>4</sub> H <sub>10</sub> ) as fuel  | :                                  |                                                                |                       |
|                                       | $2 C_4 H_{10} +$                                    | $13 O_2 \rightarrow 8 CO_2$        | $+ 10 H_2O$                                                    |                       |
| 16. How many gr                       | rams of CO <sub>2</sub> are produc                  | ed from the combust                | ion of 100. grams o                                            | of butane?            |
| 100. g C <sub>4</sub> H <sub>10</sub> |                                                     |                                    |                                                                | $=$ g $CO_2$          |
|                                       |                                                     |                                    |                                                                | g CO <sub>2</sub>     |
| 17. How many gr                       | cams of $O_2$ are needed to                         | o react with of 100. g             |                                                                |                       |
| $100. g C_4 H_{10}$                   |                                                     |                                    |                                                                | $=$ $g O_2$           |
|                                       |                                                     |                                    | •                                                              | — g O <sub>2</sub>    |
| 18 How many gra                       | ms of H <sub>2</sub> O are produce                  | d when 5.38g of O <sub>2</sub> i   | s reacted?                                                     |                       |

## **KEY**

$$2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$$

1. How many moles of O<sub>2</sub> will be formed from 1.65 moles of KClO<sub>3</sub>?

2. How many moles of KClO<sub>3</sub> are needed to make 3.50 moles of KCl?

$$\frac{3.50 \text{ mol KCl}}{2 \text{ mol KClO}_3} = \frac{3.50}{2 \text{ mol KClO}_3}$$

3. How many moles of KCl will be formed from 2.73 moles of KClO<sub>3</sub>?

4 Fe + 
$$3 O_2 \rightarrow 2 Fe_2O_3$$

4. How many moles of Fe<sub>2</sub>O<sub>3</sub> are produced when 0.275 moles of Fe are reacted?

5. How many moles of Fe<sub>2</sub>O<sub>3</sub> are produced when 31.0 moles of O<sub>2</sub> are reacted?

6. How many moles of O<sub>2</sub> are needed to react with 8.9 moles of Fe?

| 8.9 mol Fe | 3 mol O2 | $= 6.7 \mod O_2$                                                    |
|------------|----------|---------------------------------------------------------------------|
|            | 4 mol Fe | $=$ $\frac{\mathbf{o}_{11}}{\mathbf{o}_{11}}$ mor $\mathbf{o}_{21}$ |

$$2 \text{ H}_2\text{O} \rightarrow 2 \text{ H}_2 + \text{O}_2$$

7. How many moles of  $O_2$  are produced when 1.26 moles of  $H_2O$  is reacted?

$$\frac{1.26 \text{ mol H}_2O}{2 \text{ mol H}_2O} = \frac{.630}{2 \text{ mol O}_2}$$

8. How many moles of  $H_2O$  are needed to produce 55.7 moles of  $H_2$ ?

9. If enough H<sub>2</sub>O is reacted to produce 3.40 moles of H<sub>2</sub>, then how may moles of O<sub>2</sub> must have been made? (a bit challenging, but just think about it and you can probably figure it out)

#### $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$

10. How many **grams** of O<sub>2</sub> will be formed from 3.76 grams of KClO<sub>3</sub>?

11. How many **grams** of KClO<sub>3</sub> are needed to make 30.0 grams of KCl?

$$\frac{30.0 \text{ g KCl}}{74.55 \text{ g KCl}} = \frac{1 \text{ mol KCl}}{2 \text{ mol KCl}} = \frac{122.55 \text{ g KClO}_3}{1 \text{ mol KClO}_3} = \frac{49.3 \text{ g KClO}_3}{1 \text{ mol KClO}_3} = \frac{49.3 \text{ g KClO}_3}{1 \text{ mol KClO}_3} = \frac{122.55 \text{ g KClO}_3}{1 \text{ mol KClO}_3} =$$

12. How many grams of KCl will be formed from 2.73 g of KClO<sub>3</sub>?

4 Fe + 3 
$$O_2 \rightarrow 2 \text{ Fe}_2 O_3$$

13. How many grams of Fe<sub>2</sub>O<sub>3</sub> are produced when 42.7 grams of Fe is reacted?

| 42.7 g Fe | _1 _ mole Fe | $2 \mod Fe_2O_3$ | <b>15</b> 9.70 g Fe <sub>2</sub> O <sub>3</sub> |       |                                 |
|-----------|--------------|------------------|-------------------------------------------------|-------|---------------------------------|
|           | 55.85 g Fe   | 4 mol Fe         | 1 mol Fe <sub>2</sub> O <sub>3</sub>            | ] = _ | $61.0 \text{ g Fe}_2\text{O}_3$ |

14. How many **grams** of Fe<sub>2</sub>O<sub>3</sub> are produced when 17.0 grams of O<sub>2</sub> is reacted?

15. How many grams of O<sub>2</sub> are needed to react with 125 grams of Fe?

| 125 g Fe | 1 mol Fe           | 3 mol O <sub>2</sub> | 32.00 g O <sub>2</sub> | 1              |
|----------|--------------------|----------------------|------------------------|----------------|
|          | 5 <u>5.85</u> g Fe | 4 mol Fe             | 1 mol O2               | $= 53.7 g O_2$ |

Some cars can use butane  $(C_4H_{10})$  as fuel:

$$2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O_2$$

16. How many grams of CO<sub>2</sub> are produced from the combustion of 100. grams of butane?

| 100. g C <sub>4</sub> H <sub>10</sub> | 1 mol C <sub>4</sub> H <sub>10</sub>   | 8 mol CO2                            | 44.01 g CO <sub>2</sub> |       | 00       |
|---------------------------------------|----------------------------------------|--------------------------------------|-------------------------|-------|----------|
|                                       | 58.14 g C <sub>4</sub> H <sub>10</sub> | 2 mol C <sub>4</sub> H <sub>10</sub> | 1 mol CO2               | = 303 | $g CO_2$ |

17. How many grams of  $O_2$  are needed to react with of 100. grams of butane?

| 100. g C <sub>4</sub> H <sub>10</sub> | 1 mol C <sub>4</sub> H <sub>10</sub>   | 13 mol O <sub>2</sub>                | 32.00 g O <sub>2</sub> | _ 050 |         |
|---------------------------------------|----------------------------------------|--------------------------------------|------------------------|-------|---------|
|                                       | 58.14 q C <sub>4</sub> H <sub>10</sub> | 2 mol C <sub>4</sub> H <sub>10</sub> | 1 mol O <sub>2</sub>   | = 358 | $g O_2$ |

18 How many grams of H<sub>2</sub>O are produced when 5.38g of O<sub>2</sub> is reacted?