Name:	Date: Mods:
Lab # 6 – Mathematics of Chemis	try: Molar Mass Calculations
	m formula mass, involves using the Periodic Table. You take the atomic mass listed for that element. Add up the total mass of
Example: To get the molar mass of $C_6H_{12}O_6$: $C = 6 \times 12 \text{ g} = 72 \text{ g/mol}$ $H = 12 \times 1 \text{ g} = 12 \text{ g/mol}$ $O = 6 \times 16 \text{ g} = 96 \text{ g/mol}$	Now add the results for each element: $72 + 12 + 96 = 180 \text{ g/mol}$
Objectives This activity will review various math sl	kills that you will use throughout the year in chemistry.
Calculate the molar masses of the following che	emicals (show work):
Cl ₂	UF ₆
КОН	SO ₂
BeCl ₂	H ₃ PO ₄
FeCl ₃	(NH ₄) ₂ SO ₄
BF ₃	CH₃COOH

Pb(NO₃)₂

CCl₂F₂

GRAW F	OR	WI	LA	MA	22
--------	----	----	----	----	----

Name _____

Determine the gram formula mass (the mass of one mole) of each compound below.

- 1. KMnO₄ ______
- 2. KCI _____
- 3. Na₂SO₄ _____
- 4. Ca(NO₃)₂ _____
- 5. Al₂(SO₄)₃
- 6. (NH₄)₃PO₄ _____
- 7. CuSO₄•5H₂O
- 8. Mg₃(PO₄)₂
- 9. Zn(C₂H₃O₂)₂•2H₂O _____
- 10. Zn₃(PO₂)₂•4H₂O
- 11. H₂CO₃
- 12. Hg₂Cr₂O₇
- 13. Ba(CIO_s),
- 14. Fe₂(SO₃)₃
- 15. NH₄C₂H₃O₂

Name:		Date:		Mods:	
-------	--	-------	--	-------	--

Lab # 5 – Mathematics of Chemistry: Mole Calculations

Objectives

This activity will review various math skills that you will use throughout the year in chemistry.

The mole is the basic counting unit used in chemistry and is used to keep track of the amount of matter being measured or transferred. Performing calculations using molar relationships is essential to understanding chemistry. A mole is represented by Avogadro's number (6.02×10^{23}) . One mole of an element is equal to its atomic mass number in grams.

Given the following, find the number of moles: Given the following, find the number of grams:			
1. 30 grams of H ₃ PO ₄	1. 4 moles of Cu(CN) ₂		
2. 25 grams of HF	2. 5.6 moles of C_6H_6		
3. 110 grams of NaHCO ₃	3. 21.3 moles of BaCO ₃		
4. 1.1 grams of FeCl ₃	4. 1.2 moles of (NH ₄) ₃ PO ₃		
5. 987 grams of Ra(OH) ₂	5. 9.3 x 10 ⁻³ moles of SmO		
6. 564 grams of copper	6. 6.6 moles of ZnO		
7. 12.3 grams of CO ₂	7. 5.4 moles of K_2SO_4		
8. 89 grams of Pb(CH ₃ COO) ₄	8. 88.4 moles of NI ₃		

M	DLES AND MASS	Name				
Det	Determine the number of moles in each of the quantities below.					
1.	25 g of NaCl					
-						
2.	125 g of H₂SO₄					
		,				
3.	100. g of KMnO₄					
4.	74 g of KCI					
5.	35 g of CuSO ₄ * 5H ₂ O		i in the control of t			
0-4- 1-1						
Dete	rmine the number of grams in each of the quantit	ies below.				
1.	2.5 moles of NaCI					
n přenávajuhy popy		,	97. 5.13			
2.	0.50 moles of H ₂ SO ₄					
		-				
3.	1.70 moles of KMnO ₄					

4,	0.25 moles of KCI					
5.	3.2 moles of CuSO₄•5H₂O					

50

Sinstructional Fair, inc.

Chemistry IF8766