Molarity:

- a _____ description of solution concentration.
- Abbreviated ______

Molarity = _	
, -	

Problems: Show all work and circle your final answer.

- 1. To make a 4.00 M solution, how many moles of solute will be needed if 12.0 liters of solution are required?
- 2. How many moles of sucrose are dissolved in 250 mL of solution if the solution concentration is 0.150 M?
- 3. What is the molarity of a solution of HNO_3 that contains 12.6 grams HNO_3 in 1.0 L of solution?

4. How many grams of potassium nitrate are required to prepare 0.250 L of a 0.700 M solution?

5. 125 cm³ of solution contains 3.5 moles of solute. What is the molarity of the solution?

6. Which solution is more concentrated? Solution "A" contains 50.0 g of $CaCO_3$ in 500.0 mL of solution. Solution "B" contains 6.0 moles of H_2SO_4 in 4.0 L of solution. SHOW WORK!

7. How many liters of solution can be produced from 2.5 moles of solute if a 2.0 M solution is needed?

8. What would be the concentration of a solution formed when 1.00 g of NaCl are dissolved in water to make 100.0 mL of solution?