Chemistry
Heat Exchange Problems
Worksheet \#2

Single-Phase Heating/Cooling (Hot Water - Cold Water Experiment)

1. What mass of water at $5.00^{\circ} \mathrm{C}$ would we need to mix with 140.0 g of water at $85.0^{\circ} \mathrm{C}$ to obtain a final temperature of $43.0^{\circ} \mathrm{C}$?
2. What mass of water at $78.0^{\circ} \mathrm{C}$ would we need to mix with 35.0 g of water at $14.5^{\circ} \mathrm{C}$ to obtain a final water temperature of $19.5^{\circ} \mathrm{C}$?
3. We have 150.0 g of water that we will split into two samples. We'll heat the hot sample to 85.0 ${ }^{\circ} \mathrm{C}$ and we'll cool the other sample to $7.50^{\circ} \mathrm{C}$. The final temperature of the re-combined sample will be $35.0^{\circ} \mathrm{C}$. What will be the masses of the two samples?
4. The metal sodium is sometimes used as a coolant in nuclear reactors. Sodium melts at $98^{\circ} \mathrm{C}$ and boils at $883^{\circ} \mathrm{C}$. Sodium's specific heat capacity is 1.23 joules $/ \mathrm{g} /{ }^{\circ} \mathrm{C}$. What mass of sodium at $135^{\circ} \mathrm{C}$ would we need to mix with 1450 g at $710^{\circ} \mathrm{C}$ to obtain a final temperature of $485^{\circ} \mathrm{C}$?

Determination of Specific Heat Capacities, and SHC Calculations

5. A 45.7 g sample of glass was brought to thermal equilibrium with boiling water and then transferred to 250.0 g of water that was at $22.5^{\circ} \mathrm{C}$. This combination reached thermal equilibrium at $24.2^{\circ} \mathrm{C}$. What is the specific heat capacity of glass?
6. A 101.2 g sample of silver was heated in boiling water and then transferred to 350.0 g of water at $21.8^{\circ} \mathrm{C}$. The combination reached thermal equilibrium at $23.1^{\circ} \mathrm{C}$. What is the specific heat capacity of silver?
7. What mass of silver at $100.0^{\circ} \mathrm{C}$, when added to 150.0 g of water at $21.0^{\circ} \mathrm{C}$, would raise the water's temperature to $24.0^{\circ} \mathrm{C}$?
8. What mass of water at $20.0^{\circ} \mathrm{C}$ would be needed to cool 556 g of silver at $100.0^{\circ} \mathrm{C}$ to $23.0^{\circ} \mathrm{C}$?

Determination of Molar Heats of Fusion, and Molar Heat Calculations

9. The molar heat of fusion of $\mathrm{H}_{2} \mathrm{O}$ is $6.1 \mathrm{~kJ} / \mathrm{mole}$. What amount of energy would be needed to melt 376 g of ice at $0.0^{\circ} \mathrm{C}$?
10. What mass of water at $75.0^{\circ} \mathrm{C}$ would be needed to melt 145 g of ice at $0.0^{\circ} \mathrm{C}$?
11. What mass of water at $68.5^{\circ} \mathrm{C}$ would be needed to melt 275 g of ice at $0.0^{\circ} \mathrm{C}$?
12. Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is a liquid at room temperature; benzene's melting temperature is $5.7^{\circ} \mathrm{C} .97 .9 \mathrm{~g}$ of benzene melts in 100.0 g of $35.0^{\circ} \mathrm{C}$ water, with the water and excess solid benzene reaching thermal equilibrium at $5.7^{\circ} \mathrm{C}$. What is the molar heat of fusion (melting) of benzene, in kJ per mole?
13. The solvent dimethyl sulfoxide, $\mathrm{DMSO}, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$, melts at $18.5^{\circ} \mathrm{C}$. A sample of DMSO is placed in 200.0 g of water at $45.0^{\circ} \mathrm{C}$. The water's temperature drops to $18.5^{\circ} \mathrm{C} ; 120.0 \mathrm{~g}$ of DMSO melts as a result. What is the molar heat of fusion of DMSO?
14. What amount of energy would be needed to melt an iceberg at $0.0^{\circ} \mathrm{C}$ if the iceberg's mass is $2.4 *^{*} 10^{7} \mathrm{~kg}$?
15. What mass of ice would need to melt in $124,500 \mathrm{~kg}$ of water to cool the water from $12.5^{\circ} \mathrm{C}$ to $9.5^{\circ} \mathrm{C}$?
