HEAT TRANSFER AND CALORIMETRY: GUIDED PROBLEMS

Problem A A copper penny has a mass of 0.00302 kg and a temperature of 20°C. It has a melting point of 1083°C and a latent heat of fusion of 2.07 \times 10^5 J/kg. How much heat must be added to the penny to melt it and raise the liquid penny to 40°C?

\[Q = \Delta H \times m \]
\[= 2.07 \times 10^5 \times 0.00302 \]
\[= 626.387 \text{ J} \]

Problem B A copper penny has a mass of 0.00302 kg and a temperature of 20°C. It has a melting point of 1083°C and a latent heat of fusion of 2.07 \times 10^5 J/kg. How much heat must be added to the penny to melt it and raise the liquid penny to 40°C?

\[Q = mc \Delta T \]
\[= (0.00302)(0.385)(1083 - 20) \]
\[= 124 \text{ J} \]

Problem C The latent heat of sublimation (\(\Delta H_{\text{sublimation}}\)) of dry ice (solid carbon dioxide) is 570 J/g. Determine the amount of heat required to turn a 5.0-pound bag of dry ice into gaseous carbon dioxide. (Given: 1.00 kg = 2.20 lb)

\[Q = mL = (22.72 \text{ g})(570 \text{ J/g}) \]
\[= 1295040 \text{ J} \]

\[5.0 \text{ lb} \times 453.6 \text{ g/lb} \]
\[= 2272 \text{ g} \]

\[2.20 \text{ lb} \times 453.6 \text{ g/lb} \]
\[= 1000 \text{ g} \]
HEAT TRANSFER AND CALORIMETRY PARTNER PRACTICE

1. The temperature last night was 38° F. Convert this to the Celsius and to the Kelvin temperature scales. Be sure to label which temperature is which.

2. The melting point of lead is 327.3° C. Convert this measurement to Fahrenheit.

3. Oxygen changes from a gas to a liquid at -183° C. Convert this to Kelvin.

4. The specific heat of silver is 235 J/kg°C. How much heat must be added to a 0.25 kg piece of silver to raise its temperature from 25° C to 600° C?

\[Q = (0.25)(235)(600 - 25) \]
\[= 33781.25 J \quad 330000 J \]

5. How much heat energy must be added to a 0.65 kg sample of water at 30° C to turn it into steam at 125° C? (The specific heat of steam is 2100 J/kg°C and the specific heat of water is 4186 J/kg°C. The boiling point of water is 100° C. The latent heat of vaporization for water is 2.26 \times 10^6 J/kg.)

\[Q_1 = (0.65)(4186)(70 - 30) = 190463 J \]
\[Q_2 = (0.65)(2100)(100 - 30) = 1469000 J \]
\[Q_3 = (0.65)(4186)(125 - 60) = 34125 J \]
\[Q_{total} = 1693888 J \]

6. How much heat must be added to a 0.45 kg piece of lead with an initial temperature of 20° C to change it to molten (melted) lead? The specific heat of lead is 128 J/kg°C, the latent heat of fusion for lead is 2.32 \times 10^6 J/kg, and lead melts at 327° C.

\[Q_1 = (0.45)(128)(327 - 20) = 17683.2 J \]
\[Q_2 = mL = (0.45)(2.32 \times 10^6) = 10440 J \]
\[Q_{total} = 28123.2 J \]

7. A 1.2 kg sample of water has a temperature of 22° C. A 0.6 kg piece of copper at a temperature of 325° C is added to the sample. What is the final temperature of the water and copper? (The specific heat of copper is 385 J/kg °C and the specific heat of water is 4186 J/kg°C)

\[Q_{H_2O} = - Q_{copper} \]
\[mc_\Delta T = - mc_\Delta T \]
\[\Delta T = \frac{(1.2)(4186)(T_f - 22) = -(0.6)(385)(T_f - 325)}{50.232(T_f - 22) = -231(T_f - 325)} \]
\[5023.2T_f - 110510 = -231T_f + 75075 \]
\[5254.2T_f = 185585 \]
\[T_f = 35°C \]
8. A 0.50 kg block of ice has a temperature of -20°C. How much heat must be added to this ice to change it to water at 70°C?

\[L_{\text{fusion}} = 3.34 \times 10^5 \text{ J/kg} \]
\[c_{\text{ice}} = 2108 \text{ J/kg°C} \]
\[c_{\text{water}} = 4186 \text{ J/kg°C} \]

\[\begin{align*}
\text{Q}_1 &= (0.5)(3.34 \times 10^5) = \frac{167000}{1} \\
\text{Q}_2 &= (1.5)(3.34 \times 10^5) = \frac{444000}{2} \\
\text{Q}_3 &= (1.5)(4186)(70) = \frac{146570}{3} \\
\text{Q} &= \frac{334590}{3} + \frac{300000}{3} \\
\end{align*} \]

9. A copper penny has a mass of 0.003 kg and a temperature of 20°C. It has a melting point of 1083°C and a latent heat of fusion of 2.07 \times 10^5 \text{ J/kg}. How much heat must be added to the penny to melt it?

\[c_{\text{copper}} = 385 \text{ J/kg°C} \]

\[\begin{align*}
\text{Q}_1 &= (0.003)(385)(1083-20) = 1227.765 \text{ J} \\
\text{Q}_2 &= (0.003)(8.07 \times 10^5) = 1848.765 \text{ J} \\
\text{Q} &= 2000 \text{ J} \\
\end{align*} \]

10. A 0.30 kg piece of steel \((c_{\text{steel}} = 452 \text{ J/kg°C})\) at a temperature of 350°C is added to 10 kg of water at 20°C. Assuming no heat is lost to the surroundings and no water escapes, what is the final temperature of the water and steel?

\[c_{\text{water}} = 4186 \text{ J/kg°C} \]

\[Q_{\text{water}} = -Q_{\text{steel}} \]
\[mc(T_f-T_i) = -mc(T_f-T_i) \]
\[(10)(4186)(T_f-20) = -(0.30)(452)(T_f-350) \]
\[41840T_f -836800 = -135.6+47460 \]
\[41975T_f = 884260 \]
\[T_f = 21.1°C \]

11. A 0.38 kg glass container has 1 kg of water in it. The water and the container have an initial temperature of 25°C. One kg of water at 90°C is added to the container. What is the final temperature of the 2 kg of water and the container?

\[\begin{align*}
\text{Q}_{\text{water}} &= -Q_{\text{hot water}} \\
mc(T_f-T_i) &= -mc(T_f-T_i) \\
(1)(4186)(T_f-25) &= -(1)(4186)(T_f-90) \\
T_f-25 &= -T_f + 90 \\
\end{align*} \]

\[\Delta T_f = 115 \]
\[T_f = 57.5°C \]
FREZING AND BOILING POINT GRAPH

Answer the following questions using the chart above.

1. What is the freezing point of the substance? \(5^\circ C \)
2. What is the boiling point of the substance? \(15^\circ C \)
3. What is the melting point of the substance? \(5^\circ C \)
4. What letter represents the range where the solid is being warmed? \(a \)
5. What letter represents the range where the liquid is being warmed? \(c \)
6. What letter represents the range where the vapor is being warmed? \(e \)
7. What letter represents the melting of the solid? \(b \)
8. What letter represents the vaporization of the liquid? \(d \)
9. What letter(s) shows a change in potential energy? \(b, d \)
10. What letter(s) shows a change in kinetic energy? \(a, c, e \)
11. What letter represents condensation? \(d \)
12. What letter represents crystallization? \(b \)
Solve the following problems.

1. How many joules of heat are given off when 5.0 g of water cool from 75°C to 25°C? (Specific heat of water = 4.18 J/g°C)
 \[Q = (5)(4.18)(-50) = -1045 J \]

2. How many calories are given off by the water in Problem 1? (Specific heat of water = 1.0 cal/g°C)
 \[-250 \text{cal} \]

3. How many joules does it take to melt 35 g of ice at 0°C? (heat of fusion = 333 J/g)
 \[Q = (35)(333) = 11655 J \]

4. How many calories are given off when 85 g of steam condense to liquid water? (heat of vaporization = 539.4 cal/g)
 \[Q = (85)(539.4) = 45849 \text{cal} \]

5. How many joules of heat are necessary to raise the temperature of 25 g of water from 10°C to 60°C?
 \[Q = (25)(4.18)(50) = 5225 J \]

6. How many calories are given off when 50 g of water at 0°C freezes? (heat of fusion = 79.72 cal/g)
 \[Q = (50)(79.72) = 3986 \text{cal} \]