will use as a scientist. You can also solve equations with a single variable using identical methods. This worksheet offer a chance to practise these skills.

Rearranging Equations study guide

1. Solve the following equations (try rearranging the equations for x):

a.
$$5x = 8 g$$

$$X = 5$$

c.
$$\frac{x}{5} = 8$$

$$x = 8(5)$$

e.
$$5-x=8$$

 $x=-8+5$

$$\frac{5-x}{}=8$$

b.
$$5x + 3 = 8$$

h.
$$\frac{1}{5} = 8$$

d.
$$Q = U + pV$$
 for p

e. $\frac{V_p}{V_s} = \frac{N_p}{N_s}$ for N_s

f. $\theta = \frac{\lambda}{d}$ for d
 $d = \frac{\lambda}{d}$

for Q

g.
$$s = \frac{(u+v)t}{2}$$
 for u

g.
$$s = \frac{(u+v)t}{2}$$
 for h. $KE = \frac{1}{2}mv^2$ for

$$KE = \frac{1}{2}mv^2 \qquad \text{for}$$

h.
$$KE = \frac{1}{2}mv^2$$

i. $s = ut + \frac{1}{2}at^2$

i.
$$s = ut + \frac{1}{2}at^2$$

 $1. \qquad \sin\theta = \frac{a}{b}$

F = BQv

i.
$$s = ut + \frac{1}{2}at^2$$

j.
$$\frac{\rho V}{T} = nR$$

j.
$$\frac{pV}{T} = nR$$

j.
$$\frac{pV}{T} = nR$$
k.
$$a^2 = b^2 + c^2$$

 $\int \int for \theta$

for a
$$2(s-ut)$$
 for $T = PV$ $T = R$

for $D = \sqrt{a^2 - c^2}$

for
$$v$$
 $\frac{2KE}{m} = V$ for a $2(s-ut)$

$$-1x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

$$2x (at - v_4) = (-v_1) x - 1$$

3. a) Given b)
$$\sqrt{\frac{21}{2}}$$
 $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$