\qquad
\qquad

SHOW YOUR WORK

1. A roller coasters velocity at the top of the hill is $10 \mathrm{~m} / \mathrm{s}$. Two seconds later it reaches the bottom of the hill with a velocity of $26 \mathrm{~m} / \mathrm{s}$. What is the acceleration of the coaster?
2. A roller coaster is moving at $25 \mathrm{~m} / \mathrm{s}$ at the bottom of a hill. Three seconds later it reaches the top of the hill moving at $10 \mathrm{~m} / \mathrm{s}$. What was the acceleration of the coaster?
3. A swimmer speeds up from $1.1 \mathrm{~m} / \mathrm{s}$ to $1.3 \mathrm{~m} / \mathrm{s}$ during the last 20 seconds of the race. What is the acceleration of the swimmer?
4. A cars velocity changes from o m/s to $30 \mathrm{~m} / \mathrm{s}$ in 10 seconds. Calculate acceleration.
5. A satellite's original velocity is $10,000 \mathrm{~m} / \mathrm{s}$. After 60 seconds it s going $5,000 \mathrm{~m} / \mathrm{s}$. What is the acceleration
6. A car goes from a stop to $30 \mathrm{~km} / \mathrm{ss}$ in 25 seconds. What is the acceleration?
7. If a speeding train hits the brakes and it takes the train 39 seconds to go from $54.8 \mathrm{~m} / \mathrm{s}$ to $12 \mathrm{~m} / \mathrm{s}$ what is the acceleration?
8. (Be careful!) How long will it take a car to go from 0 to $44 \mathrm{~km} / \mathrm{hr}$ if they are accelerating at $5 \mathrm{~km} / \mathrm{hr}^{2}$?
9. (Be careful!) How many minutes will it take a car to go from a stop to $33 \mathrm{~km} / \mathrm{hr}$ if it accelerates at $10 \mathrm{~km} / \mathrm{hr}^{2}$
10. Calculate acceleration of a turtle going from $0.3 \mathrm{~m} / \mathrm{s}$ to $0.7 \mathrm{~m} / \mathrm{s}$ in 30 seconds.
